7 research outputs found

    UniVG: Towards UNIfied-modal Video Generation

    Full text link
    Diffusion based video generation has received extensive attention and achieved considerable success within both the academic and industrial communities. However, current efforts are mainly concentrated on single-objective or single-task video generation, such as generation driven by text, by image, or by a combination of text and image. This cannot fully meet the needs of real-world application scenarios, as users are likely to input images and text conditions in a flexible manner, either individually or in combination. To address this, we propose a Unified-modal Video Genearation system that is capable of handling multiple video generation tasks across text and image modalities. To this end, we revisit the various video generation tasks within our system from the perspective of generative freedom, and classify them into high-freedom and low-freedom video generation categories. For high-freedom video generation, we employ Multi-condition Cross Attention to generate videos that align with the semantics of the input images or text. For low-freedom video generation, we introduce Biased Gaussian Noise to replace the pure random Gaussian Noise, which helps to better preserve the content of the input conditions. Our method achieves the lowest Fr\'echet Video Distance (FVD) on the public academic benchmark MSR-VTT, surpasses the current open-source methods in human evaluations, and is on par with the current close-source method Gen2. For more samples, visit https://univg-baidu.github.io

    Generative Graph Convolutional Network for Growing Graphs

    Full text link
    Modeling generative process of growing graphs has wide applications in social networks and recommendation systems, where cold start problem leads to new nodes isolated from existing graph. Despite the emerging literature in learning graph representation and graph generation, most of them can not handle isolated new nodes without nontrivial modifications. The challenge arises due to the fact that learning to generate representations for nodes in observed graph relies heavily on topological features, whereas for new nodes only node attributes are available. Here we propose a unified generative graph convolutional network that learns node representations for all nodes adaptively in a generative model framework, by sampling graph generation sequences constructed from observed graph data. We optimize over a variational lower bound that consists of a graph reconstruction term and an adaptive Kullback-Leibler divergence regularization term. We demonstrate the superior performance of our approach on several benchmark citation network datasets

    Towards Robust Off-Policy Learning for Runtime Uncertainty

    No full text
    Off-policy learning plays a pivotal role in optimizing and evaluating policies prior to the online deployment. However, during the real-time serving, we observe varieties of interventions and constraints that cause inconsistency between the online and offline setting, which we summarize and term as runtime uncertainty. Such uncertainty cannot be learned from the logged data due to its abnormality and rareness nature. To assert a certain level of robustness, we perturb the off-policy estimators along an adversarial direction in view of the runtime uncertainty. It allows the resulting estimators to be robust not only to observed but also unexpected runtime uncertainties. Leveraging this idea, we bring runtime-uncertainty robustness to three major off-policy learning methods: the inverse propensity score method, reward-model method, and doubly robust method. We theoretically justify the robustness of our methods to runtime uncertainty, and demonstrate their effectiveness using both the simulation and the real-world online experiments
    corecore